jueves, 27 de septiembre de 2012

VECTORIAL

Mecánica newtoniana

 
  
La primera y segunda ley de Newton, en latín, en la edición original de su obra Principia Mathematica.
La mecánica newtoniana o mecánica vectorial es una formulación específica de la mecánica clásica que estudia el movimiento de partículas y sólidos en un espacio euclídeo tridimensional. Aunque la teoría es generalizable, la formulación básica de la misma se hace en sistemas de referencia inerciales donde las ecuaciones básicas del movimiento se reducen a las Leyes de Newton, en honor a Isaac Newton quien hizo contribuciones fundamentales a esta teoría.
La mecánica es la parte de la física que estudia el movimiento. Se subdivide en:
La mecánica newtoniana es adecuada para describir eventos físicos de la experiencia diaria, es decir, a eventos que suceden a velocidades muchísimo menores que la velocidad de la luz y tienen escala macroscópica. En el caso de sistemas con velocidades próximas a la velocidad de la luz debemos acudir a la mecánica relativista

MECANICA ANALITICA

La mecánica analítica es una formulación abstracta y general de la mecánica,[1] que permite el uso en igualdad de condiciones de sistemas inerciales o no inerciales sin que, a diferencia de las leyes de Newton, la forma básica de las ecuaciones de movimiento cambie. Algunos autores identifican la mecánica analítica con la teórica.[2] Otros consideran que el rasgo determinante es considerar la exposición y planteamiento de la misma en términos de coordenadas generalizadas.[3]
Lo característico de la formulación de la mecánica analítica es que, a diferencia de la mecánica newtoniana, se toman como fundamento primero principios generales diferenciales e integrales,[4] y que a partir de estos principios se obtengan analíticamente las ecuaciones de movimiento.[5] La exposición de los principios generales, la deducción a partir de ellos de las ecuaciones diferenciales de movimiento y los métodos de integración de éstas, constituye el contenido principal de la mecánica analítica.

TRAYECTORIA

la trayectoria es el lugar geométrico de las posiciones sucesivas por las que pasa un cuerpo en su movimiento. La trayectoria depende del sistema de referencia en el que se describa el movimiento; es decir el punto de vista del observador.
En la mecánica clásica la trayectoria de un cuerpo puntual siempre es una línea continua. Por el contrario, en la mecánica cuántica hay situaciones en las que no es así. Por ejemplo, la posición de un electrón en un orbital de un átomo es probabilística, por lo que la trayectoria corresponde más bien a un volumen...

def.

Desplazamiento (vector)

 
 
Vector desplazamiento y distancia recorrida a lo largo de un camino.
En mecánica, el desplazamiento es el vector que define lo que es la posición de un punto o partícula en relación a un origen A con respecto a una posición B. El vector se extiende desde el punto de referencia y se puede hasta la posición final. Cuando se habla del desplazamiento de un cuerpo en el espacio solo importa la posición inicial del cuerpo y la posición final, ya que la trayectoria que describe el cuerpo no es de importancia si se quiere hallar su desplazamiento. Esto puede observarse cuando un jugador de fútbol parte de un punto de la cancha y le da una vuelta entera para terminar en la misma posición inicial; para la física allí no hay desplazamiento porque su posición inicial es igual a la final.

def. posicion.-.-.-.-.-

En física, la posición de una partícula indica su localización en el espacio o en el espacio-tiempo. Se representa mediante sistemas de coordenadas.
En mecánica clásica, la posición de una partícula en el espacio se representa como una magnitud vectorial respecto a un sistema de coordenadas de referencia. En relatividad general, la posición no es representable mediante un vector euclidiano, ya que en el espacio-tiempo es curvo en esa teoría, por lo que la posición necesariamente debe representarse mediante un conjunto de coordenadas curvilíneas arbitrarias, que en general no pueden ser interpretadas como las componentes de un vector físico genuino. En mecánica cuántica, la representacón de la posición de una partícula es aún más compleja, debido a los efectos de no localidad relacionados con el problema de la medida de la mecánica cuántica.
En general, en un sistema físico o de otro tipo, se utiliza el término posición para referirse al estado físico o situación distinguible que exhibe el sistema. Así es común hablar de la posición del sistema en un diagrama que ilustre variables de estado del sistema.

Definicion de Movimiento

Movimiento es la acción y efecto de mover (hacer que un cuerpo deje el lugar que ocupa y pase a ocupar otro; agitar una cosa o parte del cuerpo; dar motivo para algo). Una de las acepciones del término refiere al estado de los cuerpos mientras cambian de posición o lugar. Por ejemplo: “Pese a que la fila de coches es interminable, ya se advierte un movimiento sostenido de los vehículos”, “Es un boxeador de movimientos muy rápidos que desconciertan al rival”,

BIOGRAFIA************

Isaac Newton

(25/12/1642 - 31/03/1727)


Isaac Newton

Matemático y físico británico



"Lo que sabemos es una gota de agua; lo que ignoramos es el océano"
Isaac Newton


Nació el 25 de diciembre de 1642 en Woolsthorpe, Lincolnshire, Inglaterra. Hijo póstumo y único de una familia de agricultores. Su pequeño tamaño y delicado estado hacen temer sobre su suerte aunque finalmente sobrevive. Perteneciente a la joven generación deFellows de la Royal Society. Desde joven apareció como "tranquilo, silencioso y reflexivo" aunque lleno de imaginación. Se entretenía construyendo artilugios: un molino de viento, un reloj de agua, un carricoche que andaba mediante una manivela accionada por el propio conductor, etc. Cursó estudios en la escuela primaria en Grantham. En 1661, ingresó en el Trinity College de la Universidad de Cambridge, donde estudió matemáticas bajo la dirección del matemático Isaac Barrow. Recibió su título de bachiller en 1665 y le nombraron becario en Trinity College en 1667. Desde 1668 fue profesor. Newton se dedicó al estudio e investigación de los últimos avances en matemáticas y a la filosofía natural.

Realizó descubrimientos fundamentales que le fueron de gran utilidad en su carrera científica. Consiguió en el campo de la matemáticas sus mayores logros. Generalizó los métodos que se habían utilizado para trazar líneas tangentes a curvas y para calcular el área encerrada bajo una curva, descubriendo que los dos procedimientos eran operaciones inversas. Uniéndolos en lo que llamó el método de las fluxiones, desarrolló en 1666 lo que se conoce hoy como cálculo, un método nuevo y poderoso que situó a las matemáticas modernas por encima del nivel de la geometría griega. En 1675 Leibniz llegó de forma independiente al mismo método, al que llamó cálculo diferencial; su publicación hizo que Leibniz recibiera los elogios por el desarrollo de ese método, hasta 1704, año en que Newton publicó una exposición detallada del método de fluxiones. En 1669 obtuvo la cátedra Lucasiana de matemáticas en la Universidad de Cambridge.

La óptica también fue del interés de Newton. Llegó a la conclusión de que la luz del Sol es una mezcla heterogénea de rayos diferentes -representando cada uno de ellos un color distinto- y que las reflexiones y refracciones hacen que los colores aparezcan al separar la mezcla en sus componentes. Demostró su teoría de los colores haciendo pasar un rayo de luz solar a través de un prisma, el cual dividió el rayo de luz en colores independientes. En el año 1672 envió una breve exposición de su teoría de los colores a la Sociedad Real de Londres. En 1704, publicó su obra Óptica, en donde explicaba detalladamente su teoría. En 1684 recibió la visita de Edmund Halley, un astrónomo y matemático con el que discutió el problema del movimiento orbital. Durante los dos años y medio siguientes, estableció la ciencia moderna de la dinámica formulando las tres leyes del movimiento. Aplicó estas leyes a las leyes de Kepler sobre movimiento orbital y dedujo la ley de la gravitación universal. Publicó su teoría en Principios matemáticos de la filosofía natural (1687), obra que marcó un punto de inflexión en la historia de la ciencia.

En 1703 fue elegido presidente de la Sociedad Real, un cargo que ocupó hasta el final de su vida. Además de su interés por la ciencia, también se sintió atraído por el estudio de la alquimia, el misticismo y la teología.

Sus años de madurez y vejez transcurrieron al cuidado de una sobrina, Cátherine Barton, hija de una hermanastra y casada con John Conduit, que se convertiría en su más ferviente apologista. Algunos biógrafos corrigen que Isaac Newton murió virgen. Su evidente misoginia, unida a un puritanismo extremo, le impedía acudir a los burdeles. Isaac Newton falleció el 31 de marzo de 1727 en Londres tras un brusco empeoramiento de su afección renal. Reposa en la abadía de Westminster. Dejó una cuantiosa colección de manuscritos. Los investigadores descubrieron miles de folios conteniendo estudios de alquimia, comentarios de textos bíblicos, así como cálculos herméticos oscuros e ininteligibles.